HISTORY
Earlier forms of automation
Cams
The automation of machine tool control began in the 19th century with cams that "played" a machine tool in the way that cams had long been playing musical boxes or operating elaborate cuckoo clocks. Thomas Blanchard built his gun-stock-copying lathes (1820s–30s), and the work of people such as Christopher Miner Spencer developed the turret lathe into the screw machine (1870s). Cam-based automation had already reached a highly advanced state by World War I (1910s).However, automation via cams is fundamentally different from numerical control because it cannot be abstractly programmed. Cams can encode information, but getting the information from the abstract level of an engineering drawing into the cam is a manual process that requires sculpting and/or machining and filing.
Various forms of abstractly programmable control had existed during the 19th century: those of the Jacquard loom, player pianos, and mechanical computers pioneered by Charles Babbage and others. These developments had the potential for convergence with the automation of machine tool control starting in that century, but the convergence did not happen until many decades later.
Tracer control
The application of hydraulics to cam-based automation resulted in tracing machines that used a stylus to trace a template, such as the enormous Pratt & Whitney "Keller Machine", which could copy templates several feet across. Another approach was "record and playback", pioneered at General Motors (GM) in the 1950s, which used a storage system to record the movements of a human machinist, and then play them back on demand. Analogous systems are common even today, notably the "teaching lathe" which gives new machinists a hands-on feel for the process. None of these were numerically programmable, however, and required a master machinist at some point in the process, because the "programming" was physical rather than numerical.Servos and selsyns
One barrier to complete automation was the required tolerances of the machining process, which are routinely on the order of thousandths of an inch. Although connecting some sort of control to a storage device like punched cards was easy, ensuring that the controls were moved to the correct position with the required accuracy was another issue. The movement of the tool resulted in varying forces on the controls that would mean a linear input would not result in linear tool motion. The key development in this area was the introduction of the servomechanism, which produced highly accurate measurement information. Attaching two servos together produced a selsyn, where a remote servo's motions were accurately matched by another. Using a variety of mechanical or electrical systems, the output of the selsyns could be read to ensure proper movement had occurred (in other words, forming a closed-loop control system).The first serious suggestion that selsyns could be used for machining control was made by Ernst F. W. Alexanderson, a Swedish immigrant to the U.S. working at General Electric (GE). Alexanderson had worked on the problem of torque amplification that allowed the small output of a mechanical computer to drive very large motors, which GE used as part of a larger gun laying system for US Navy ships. Like machining, gun laying requires very high accuracy - fractions of a degree - and the forces during the motion of the gun turrets was non-linear. In November 1931 Alexanderson suggested to the Industrial Engineering Department that the same systems could be used to drive the inputs of machine tools, allowing it to follow the outline of a template without the strong physical contact needed by existing tools like the Keller Machine. He stated that it was a "matter of straight engineering development". However, the concept was ahead of its time from a business development perspective, and GE did not take the matter seriously until years later, when others had pioneered the field.
To be continued
Source : wikipedia
No comments:
Post a Comment